
5.1 Area and Distances 

 
In this section we will learn how to approximate the area under a curve or the distance traveled by a car. 

 

The Area Problem 

 

Say that we have a function y = f(x)  that is continuous from a  to b.  If we would like to find the area 

under this curve y = f(x),  which is the shaded region, we must bound the graph of f  with vertical lines at 

x = a  and x = b, and the x-axis.  See the figure below. 

 
 

But notice that this is a difficult problem because it’s not easy to find the area of a region that has curved 

sides.  In other words, if we have a horizontal line or a line with a constant slope instead of the curved 

side, this would not be that difficult of a problem because we could use the formula for the area of a 

rectangle or a triangle to find the area. 

 

With these problems we can approximate the area of the regions by using rectangles.  If we break up the 

region into many rectangles, we will have a better approximation of the region.  Whereas, if we use less 

rectangles, the approximation will not be as good. 

 

Example:  Use rectangles to estimate the area under the curve of  y = x3  from 0 to 1. 

 

Let’s complete this task by breaking up the area into 1, 2 and 4 rectangles. 

 

For 1 rectangle:   The area of y = x3  from 0 to 1, A = (1)(1)3 = 1  (Using the height from the right side of             

the rectangle.)    Remember the area of a rectangle is base x height. 

 



For 2 rectangles:   
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For 4 rectangles: 

       𝐴 = 𝐴
0−

1

4

+ 𝐴1

4
−

1

2

+ 𝐴1

2
−

3

4

+ 𝐴3

4
−1

 

       𝐴 =
1

4
(

1

4
)

3

+
1

4
(

1

2
)

3

+
1

4
(

3

4
)

3

+
1

4
(1)3 

       𝐴 =
1

256
+

1

32
+

27

256
+

1

4
 

 

       𝐴 =
1+8+27+64

256
=

100

256
=

25

64
= .390625 

 

 

 

 

 

Notice that the area of y = x3  seems to be getting smaller as we increase the number of rectangles.  For 

this reason we could say that the area of y = x3  from x = 0  to x = 1  is less than .390625.  In the example 

we just completed the x-values  used were the right end-points of every rectangle.  Let’s denote the area 

found for the curve y = x3  from x = 0  to x = 1  using the right end-points as AR.  So we can say that  

AR < .390625. 

 

Now instead of using the right end-points  of each rectangle, let’s use the left end-points of each rectangle 

to find the area under the curve y = x3  from x = 0  to x = 1.  Denote this area as AL.  We will also use 4 

rectangles. 
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Using these two methods to find the area, we can see that the actual area, A, is between the left and right 

estimations.  In other words           𝑨𝑳 < 𝑨 < 𝑨𝑹 

    .140625 < A < .390625 

 

If we were to use 16 intervals (rectangles) we would get  𝐴𝑅 ≈ 0.2822  and  𝐴𝐿 ≈ 0.2197  therefore, 

0.2197 < A < 0.2822. 

 

We could get better approximations by increasing the number of rectangles.  I have created a table to 

show the results using n  number of rectangles using the left and right endpoints to calculate the heights. 

 

With 1000 rectangles we can see that A is between AL  and 

AR.  We could say that A = .25 (The average of AL and AR)  

This is a good estimate for the area under the curve of 

y = x3  from x = 0  to  x = 1. 

 

It can be proved that AL = AR  if we have n → ∞. 

 

 

 

 

Now let’s take this idea a step further and subdivide a region into n rectangles of equal width as show 

below. 

 

 

The width of the interval [a, b] is b – a, so the 

Width of each of the n rectangles is ∆𝑥 =
𝑏−𝑎

𝑛
. 

The rectangles divide the interval [a, b] into n 

subintervals:[𝑥0, 𝑥1], [𝑥1, 𝑥2], [𝑥2, 𝑥3], … , [𝑥𝑛−1, 𝑥𝑛]  

Where a = x0 and b = xn.  The right endpoints of 

the subintervals are 

𝑥1 = 𝑎 + ∆𝑥  

𝑥2 = 𝑎 + 2∆𝑥  

𝑥3 = 𝑎 + 3∆𝑥  

 ⋮  
 

 

Let’s approximate the 𝒊𝒕𝒉 rectangle, 𝑨𝒊 by a rectangle with width ∆𝒙  and height 𝒇(𝒙𝒊), which is the value 

of f  at the right endpoint.  Then the area of the 𝒊𝒕𝒉 rectangle is 𝒇(𝒙𝒊) ∙ ∆𝒙.  Using this idea, we can 

approximate the area of the region by find the sum of the areas of the rectangles, that is  

𝑹𝒏 = 𝒇(𝒙𝟏)∆𝒙 + 𝒇(𝒙𝟐)∆𝒙 + 𝒇(𝒙𝟑)∆𝒙 + ⋯ + 𝒇(𝒙𝒏)∆𝒙 (where 𝑅𝑛 represents the area of the region 

using right endpoints) 

 

n AL AR 

 20 .2256 .2756 

50 .2401 .2601 

100 .2450 .2550 

200 .2475 .2525 

500 .2490 .2510 

1000 .2495 .2505 

 

 



Definition:  The area A of the region that lies under the graph of the continuous function f  is the limit  of 

the sum of the areas of the approximating rectangles: 

𝑨 = 𝐥𝐢𝐦𝒏→∞ 𝑹𝒏 = 𝐥𝐢𝐦
𝒏→∞

 [𝒇(𝒙𝟏)∆𝒙 + 𝒇(𝒙𝟐)∆𝒙 + 𝒇(𝒙𝟑)∆𝒙 + ⋯ + 𝒇(𝒙𝒏)∆𝒙]. 

It can be proved that we get the same value if we use left endpoints: 

 

𝑨 = 𝐥𝐢𝐦𝒏→∞ 𝑳𝒏 = 𝐥𝐢𝐦
𝒏→∞

 [𝒇(𝒙𝟎)∆𝒙 + 𝒇(𝒙𝟏)∆𝒙 + 𝒇(𝒙𝟐)∆𝒙 + ⋯ + 𝒇(𝒙𝒏−𝟏)∆𝒙]  (𝑳𝒏 represents the area of the 

region using left endpoints) 

 

We often use sigma notation (Σ) to write sums.  For example,   

∑ 𝑓(𝑥𝑖) =𝑛
𝑖=1  𝒇(𝒙𝟏)∆𝒙 + 𝒇(𝒙𝟐)∆𝒙 + 𝒇(𝒙𝟑)∆𝒙 + ⋯ + 𝒇(𝒙𝒏)∆𝒙 

Therefore, the expressions for area using the left and right endpoints are: 
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The following theorem might be useful when completing some of these summations. 

 

Theorem:  Sums of Powers of Integers.   

Let n be a positive integer and c be a real number. 

  
 

Example:  Use the definition to find an expression for the area under the graph of f  as a limit.  Do not 

evaluate the limit.  Use the right endpoints.  𝒇(𝒙) =
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The sum of the areas of the approximating rectangles is  

𝑹𝒏 = 𝒇(𝒙𝟏)∆𝒙 + 𝒇(𝒙𝟐)∆𝒙 + 𝒇(𝒙𝟑)∆𝒙 + ⋯ + 𝒇(𝒙𝒏)∆𝒙 
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Using the definition . . .  
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Midpoint 

 

What if instead of using the left endpoints or the right endpoints we instead used the midpoints of the 

subintervals.  Suppose f  is defined on a closed interval [a, b], which is divided into n  subintervals of equal 

width, Δx.  If 𝒙𝒊 is a point in the 𝒊𝒕𝒉subinterval  [𝑥𝑖−1, 𝑥𝑖], for 𝑖 = 1, 2, … , n, then the area under the curve 

would be 𝑨 = 𝐥𝐢𝐦𝒏→∞ 𝑴𝒏 = 𝐥𝐢𝐦𝒏→∞ 𝒇(𝒙𝒊)∆𝒙  where 𝒙𝒊 = 𝒂 + (𝒊 −
𝟏

𝟐
) ∆𝒙   (Note: the midpoint of the 

interval is the average of the endpoints of the interval.  For the interval [0, 1], the midpoint would be 0.5.) 

 

Example:  Let 𝑓(𝑥) = 𝑥2 on [0, 1].  Find the area below the curve using the midpoint approximation with 

4 rectangles. 

 

Dividing the area into 4 rectangles gives us the following subintervals: [0,
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The Distance Problem 

 

Say there is an object moving along a line with a known position function.  We learned in previous 

chapters that the slope of a line tangent to the graph of the position function at a certain time give the 

velocity function of a moving object. 

 

If there is a car traveling at a constant velocity of 60 MPH along a straight highway over a two-hour 

period, then the displacement of the car between t = 0 and t = 2 is found by: 

 



Displacement (distance) = rate ∙ time 

           = 60 MPH · 2 hr 

           = 120 miles 

 

Notice that this product is the area of the rectangle formed by the velocity curve and the t – axis between  

t = 0 and t = 2. 

     
 

This is great but we know that objects do not have a constant velocity.  Their velocities change over time.  

One thing we can do is divide the time interval into many subintervals and approximate the velocity on 

each subinterval with a constant velocity.  Then the displacement on each interval is calculated and 

added.  This is only an approximation, just like the area approximations we did previously.  However, the 

approximations improve as the number of subintervals increase. 

 

Example:  Suppose the velocity in meters per second (m/s) of an object moving along a line is given by 

the formula v = t2, where 0 < t < 8.  Approximate the displacement of the object by dividing the into 

interval [0, 8] into 4 subintervals.  On each subinterval, approximate the velocity with a constant equal to 

the value of v evaluated at the midpoint of the subinterval. 

 

Using the idea of rectangles, we have  ∆𝑡 =  
8−0

4
= 2 

𝑡𝑖 = 𝑎 + (𝑖 −
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2
) ∆𝑡, where a = 0 
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Therefore, the displacement = 𝑓(𝑡1)∆𝑡 + 𝑓(𝑡2)∆𝑡 + 𝑓(𝑡3)∆𝑡 + 𝑓(𝑡4)∆𝑡 

     = 12(2) + 32(2) + 52(2) + 72(2) 

     = 2 + 18 + 50 + 98 

     = 168 meters 

2 

60mph 


